4 Testing

Testing is an extremely important component of most projects, whether it involves a circuit, a
process, power system, or software.

The testing plan should connect the requirements and the design to the adopting test strategy
and instruments. In this overarching introduction, given an overview of the testing strategy.
Emphasize any unique challenges to testing for your system/design.

For our team we aim to test a multitude of different scenarios that connect with our use cases
and requirements. This will cover not only the database and the external api’s, but also the
backend connectivity as a whole. These cases will allow us to be sure that as a whole the
backend for the system is functioning properly and is able to run the algorithm and generate
routes from given data both from the api’s and the database. While these backend unit and
system tests are occurring the frontend mobile and desktop applications will also be tested.
These tests will align with use cases regarding the various types of users that our program can
have and how they would go about using the program. The challenge for this testing model is
testing the connectivity of the frontend and backend. Since this project has only one backend
that is going to be deployed to two different frontend platforms, the challenge will be coming up
with a comprehensive amount of tests that are able to be used to verify use cases in both the
mobile and desktop application.

4.1 Unit Testing

There individual units that exist within our program are the customer interface, the dispatcher
interface, the driver interface, the communication service, the database, and also the use of
external api that covers the algorithm for the program. These interfaces contain units within
them that will all be individually tested to ensure that the use cases for each user are working
correctly. This will be done through different ways though depending on which part of the
program we are dealing with. For frontend testing we are looking at using Selenium or Appium
in order to simulate a specific user running and working within the frontend. This will allow for
tests to be run that follow the information pathway that is developed for that specific use case
and see if the workflow that the user would follow in fact works within the scope of the frontend.
Additionally for individual frontend pages field placement and style will be checked to ensure
that text fits within input fields and additionally that pages have proper connectivity to each other
within both frontend applications. For the backend of the project the database will be tested in a
few different ways. Firstly we will run a series of queries and check the results in an attempt to
see what commonly used queries do to the data within the database. These queries will follow
the flow of use cases that were developed and will simulate the data that would be needed in

order to run the assignment algorithm. These tests and queries can either be run through a
program such as MySQL workbench or through a terminal. For the backend algorithm code and
the api’s these will be tested through the use of following use cases with static data numbers.
Standard expectations for the algorithm will be developed such that we can have expected
results from these static data numbers and use them to verify use cases for different assignment
scenarios. Additionally the api’s will be tested to ensure that we are able to reliably use them to
collect data and information that is needed for the assignment algorithm. These unit tests will
follow the standard unit testing framework and will be done in Junit or the equivalent testing
environment.

4.2 Interface Testing

The interfaces present in the current iteration of the application architecture are the customer
interface, dispatcher interface and driver interface. The customer interface will be used by the
customer to interact with the application functions and interact with order dispatchers via the
communication service. The dispatcher interface will be used by the dispatcher to interact with
application functions and interact with the customers and drivers associated with the orders.
The driver interface will be used by drivers to interact with application functions and interact with
dispatchers associated with orders.

In the current iteration of the architecture, interfaces are being treated as separate components,
and access to the components are determined by user role. Shared interfaces such as user
login and registration are shared across all users, but other interface components are user role
dependent. Ex: Customer users can only interact with the customer interface and will be limited
to interaction with the customer interface, and not the dispatcher and driver interface.

Access to specific API services (specific application function) is also dependent on user role and
subsequently user interface. Ex: Http calls to the new order service are only allowed from the
customer interface.

Interface testing will mostly be based on the black box testing model. Black box testing is the
most suited model for interface testing as the goal of this testing method is not to dig deep into
the code, going through the application’s internal functioning, but to interact with the Ul, test the
end user functionality, and make sure that every input and output of the system meets the
specified requirements.

The tools under consideration to be used for the mobile Ul testing are Robotium and Espresso.

Robotium is an android Testing framework to automate test cases for native and hybrid
applications. Robotium can be used to create strong automatic GUI testing cases for Android
applications.

Espresso is a Ul test framework that can be used to create automated Ul tests. Espresso tests
run on an actual device or emulator and behave as if an actual user is using the app (i.e. if a
particular view is off screen, the test won't be able to interact with it).

Customer Interface testing scenarios :

- Customer mobile Ul will actively allow user touch input such as swipes or clicks, in order
to test functional status of Ul components such as button on click listeners and swipe
listeners.

- Customer web Ul will actively allow user input such as mouse clicks and scrolls, in order
to test functional status of Ul components such as buttons on click listeners and scroll
listeners.

- Customer mobile Ul will redirect to the correct page on user input such as swipe or click,
in order to test navigation between screens/pages.

- New order form will allow users to input data into form fields, and run Ul side validations
on the form field data.

- Messaging page will actively update and persist message data between user and order
dispatchers.

- Messaging page will correctly redirect to user messages on user click input, in order to
test messaging page navigation.

- Order tracking page/screen will respond to user order information requests with correct
data, in order to test backend service functionality and frontend json response handling
and formatting.

- Truck allocation page will display updated and accurate truck information on new user
order input. Automated page navigation between new order form and truck allocation
page will be tested.

Dispatcher Interface testing scenarios :

- Dispatcher mobile Ul will actively allow dispatcher touch input such as swipes or clicks,
in order to test functional status of Ul components such as button on click listeners and
swipe listeners.

- Dispatcher web Ul will actively allow user input such as mouse clicks and scrolls, in
order to test functional status of Ul components such as buttons on click listeners and
scroll listeners.

- Dispatcher mobile Ul will redirect to the correct page on user input such as swipe or
click, in order to test navigation between pages.

- Messaging page will actively update and persist message data between order
dispatchers, users and truck drivers.

- Messaging page will correctly redirect to user messages on dispatcher click input, in
order to test messaging page navigation.

- Order tracking page/screen will respond to dispatcher order information requests with
correct data, in order to test backend service functionality and frontend json response
handling and formatting.

- Route allocation page will display update and accurate route information on the google
map component on the page. Calls to the google maps api and page map component
updation will be tested.

Driver Interface testing scenarios :

- Driver mobile Ul will actively allow user touch input such as swipes or clicks, in order to
test functional status of Ul components such as button on click listeners and swipe
listeners.

- Driver mobile Ul will redirect to the correct page on user input such as swipe or click, in
order to test navigation between screens/pages.

- New order form will allow users to input data into form fields, and run Ul side validations
on the form field data.

- Messaging page will actively update and persist message data between order
dispatchers and truck drivers.

- Messaging page will correctly redirect to user messages on driver click input, in order to
test messaging page navigation.

- Order tracking page/screen will respond to driver order information requests with correct
data, in order to test backend service functionality and frontend json response handling
and formatting.

- Route allocation page will display update and accurate route information on the google
map component on the page. Calls to the google maps api and page map component
updation will be tested.

4.3 Integration Testing

One critical path to test will be a customer User correctly see its orders. This will require the
user to view their orders correctly in the web application by requesting information from the
Order Tracking Service. The Order will be in a database and has to have been set from the
Truck and Route Allocation Services. Additionally we will need to test the cycle starting from the
Dispatcher Interface. The dispatcher web application will most importantly need driver orders
which will be dependent on the Route Allocation Service, then the Route Allocation Service will
be using an external API to process traffic and map data. Also, a Driver will use the Driver
Interface in the form of a mobile application, this will be dependent on the Communication
Service and Order Tracking Service. These three are our critical integration requirements
because of our primary use cases. A Customer would need to track their orders, a Dispatcher
would need to submit new orders, and a Driver would need to view its orders assigned.

One critical aspect we will assess is the response time from customer order to assignment. This
will involve an event from the customer web application which calls the user order service, truck
allocation service, route allocation service, map API, and calls our vehicle routing algorithm.

We will test this by performing a new user order from our front end web application, in Chrome
Developer Tools we will be able to view the response time of this response which must use all of
the services listed previously. .

4.4 System Testing

For system testing strategy is to focus on interaction between all parts of the system as much as
possible, and individual tests should be less plentiful and more general. Starting with unit tests,
they are still important for system level testing but don’t need to be as plentiful or specific. For
example, a set of unit tests on a file in the customer interface can probably be narrowed down to
a single test that covers the general functionality of that file. In terms of interface testing
scenarios, | think it's most important to zoom in on scenarios that cover as much of the entire
system as possible. An example would be the order tracking scenario in the dispatcher
interface, where the page responds to driver order information requests. As stated above, this
test is important because it tests both service functionality on the backend and json response
handling/formatting on the frontend. And then integration tests are made for interaction between
all parts of the stack, so most of those can be kept and considered part of the system-level
testing.

No new tools need to be added for these tests, but rather a combination of the same tools that
are used for unit and interface and integration testing. Unit test files should still be made in the
code editors that we build the app in. Interface tools should use both dev tools on the frontend
and postman on the backend. And then integration testing will use a combination of these
depending on the functionality being tested.

4.5 Regression Testing

The most critical of features to our program is the reassignment algorithm, so ensuring that new
changes do not break this will be key when looking at regression testing. The reason this is so
important is that the algorithm is what will be the key part of the project that all other
components need to interact with, so any requirement for the project is directly tied to the
correctness of this algorithm. To ensure that the reassignment algorithm does not break upon
changes being made, firstly we will use the standard data set that was developed for unit testing
to verify that with new changes the assignment algorithm still outputs the expected results.
Once we can verify that the assignment algorithm works as expected then we can move on to
automated tests on both the mobile and desktop applications in order to verify that data and
requests are correctly being sent to the backend. This will narrow down the scope of any
problems that arise to one specific frontend platform rather than having to work through both in
the event of any bugs. Additionally these tests will allow us to verify if any problems are
occurring with the database if specific known queries are used to retrieve information such that
the result of what these queries return is known. The new features or implementations that we
foresee that may cause issues is the use of a larger fleet of trucks or warehouses, which might
cause issues within the database, or adding additional ui changes. The regression testing in
these cases needs to verify the response time of the program as adding data such as this or
new ui pages should not alter the response time of assignment in any drastic way. The only
thing that would be a drastic change to the core of our project would be a change to the
reassignment algorithm itself. This new algorithm would force our regression testing to follow a
different method of testing each component of both the frontend and backend with every part
except the new algorithm. This would ensure that all of the other components are functioning
properly independently and together. From there the connections between the new algorithm

and each individual component would need to be tested and then finally automated tests like the
ones mentioned earlier would be used to verify that prior use cases that were satisfied with the
program are still functioning properly and as expected.

4.6 Acceptance Testing

Our approach to acceptance testing is to incorporate it into our sprints as we are using the agile
approach. Before every sprint, we will lay out the goals to be met in regard to what the client
wants and what the specifications state. At the end of each sprint we will review if these goals
were met and if the appropriate functional and non-functional requirements are being met.
When possible, we will verify functional requirements are being met through dry end-to-end
testing as stated in the requirements section (from the requirements document). As for the rest
of the functional and the non-functional requirements, those will be verified through regular
meetings with the client. Consistent communication with the client will ensure that we remain
on track and the final round of acceptance testing goes smoothly.

4.7 Security Testing

While security is not a major concern for this project, we will use basic admin tools for the
databases to ensure that a user is registered and has password secured access to the system.
Additionally Ul fields will be protected so that no code or other malicious user can use the
system.

4.8 Results

We don't have any results ready since we haven't tested anything yet. But we have a list of
unit testing that we will be using in order to test our project.

Testing Api’s to unsure that we are
able to use them in collecting our
data.

Used to simulate a specific user
running and working within the
frontend.

Used to simulate the data that
would be needed in order to run
the assignment algorithm.

Figure 4.8.1: Unit testing

into different

> [Break test cases] »| Api & data bases

T
()

Mobile & desktop
Improve use cases applications

Choose use cases

_[Develop project

Figure 4.8.2: Testing plan

Our testing plan follows the test Driven Development software development process. In this
process, requirements for the project are broken down into different individual test cases. This is
so that everything that is created so far can be measurable. After this, code is redesigned for
each test case so that the test case passes. Once the developer does this for a number of
requirements, the tests are refactored and the process is completed again. This is so the tests
get more detailed and the code gets much more secure.

